
Peter Willett
University of Connecticut

peter.willett@uconn.edu

I. INTRODUCTION

The initial paper on the subject of distributed detection, by Tenney and Sandell [27], showed that
under a fixed fusion rule, for two sensors with one bit outputs, the optimal Bayes sensor decision rule
is a likelihood ratio test. In [5], it is shown that the optimal fusion rule for N sensors is a likelihood
ratio test on the data received from the sensors. Reibman and Nolte [23] and Hoballah and Varshney
[10] have generalized the results in [27] to N sensors with optimal fusion, again with the restriction of
one bit sensor outputs. Hoballah and Varshney [11] have also investigated system optimization under the
aforementioned conditions for a mutual information criterion. The restriction of the sensor outputs to
single bits seems unduly harsh since it implies either very rapid decision rates or extremely narrowband
channels. In this paper, we remove this restriction and assume instead that the ith sensor produces a
log2Mi bit output. The authors have derived some results concerning this more general case in [35];
using different techniques, Tsitsiklis has come to conclusions similar to those presented in this paper
[29], [30], as have, for example Thomopoulos, Viswanathan, et al. [28], [32].

As always, when speaking of optimality, it is necessary to impose a criterion for judgment. For detectors,
several such measures have been used. In this paper, we study the structure of optimal decentralized
detectors for the Neyman-Pearson, Bayes, Ali-Silvey, and mutual (Shannon) information criteria. We
assume that, conditioned on the actual hypothesis (state of nature), the random processes observed at
any two different sensors are independent. Given this assumption we show that for each criterion, the
optimal strategy is to quantize the local likelihood ratio at the sensors (to the maximum number of bits
allowable), and transmit this result to the fusion center. The fusion center then performs a likelihood ratio
test on this received data.

That to quantize the likelihood ratio is the optimal thing to do is scarcely a surprising result. Even
prior to a proof of its optimality it was used by a number of researchers; and most certainly an excellent
and rigorous proof is available in [29]. In that work, however, reference is made to the different and
equally-rigorous proof in [35], and since [35] has never been published archivally, it seems appropriate
to offer it in the present paper. Certainly the field has not stood still since [35], [29], and some papers
we particularly admire are [3], [6], [4]; but to present a complete bibliography is not the aim of this
offering.

Following presentation of background material in section II, section III, demonstrating optimality of
likelihood ratio quantization under Neyman-Pearson, Bayes, and Ali-Silvey distance criteria, are more
detailed versions of the material in [35]. Section IV provides discussion and a number of examples and
comparisons. One of these will deal with a case in which sensors observe (conditionally) iid data, yet
optimally should not use an identical quantization; in section V we discuss this pathology in some depth.

II. STATEMENT OF THE PROBLEM

We consider the binary detection problem with N sensors. The purpose of the detector is to discriminate
optimally between two states of nature H0 and H1. For example, H0 may represent a noise only hypothesis
whereas H1 represents signal plus additive noise. For the Bayes and mutual information criteria, we
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consider the state of nature to be a random variable; for the Neyman-Pearson and Ali-Silvey criteria, it
is assumed to be deterministic. The ith sensor input is a realization of the random vector Xi ∈ (Ωi, Bi)
(of arbitrary dimension). The statistical behavior of this random vector is defined by

H0 : Xi ∼ P0i

H1 : Xi ∼ P1i

where H0 and H1 are the null and alternative hypotheses, respectively, and the Pki, i = 1, 2, . . . , N ,
k = 0, 1 are probability distributions. We assume throughout that P0i and P1i are absolutely continuous
with respect to each other; hence, the same σ-algebra is used under both hypotheses.

If the channels between the sensors and the fusion center are not bandlimited, the decentralized detection
problem becomes, in effect, centralized. The sensors will then transmit the received data directly. Let x =
{x1, x2, . . . , xN} be a realization of the complete (at all sensors) random data X = {X1, X2, . . . , XN}
with distribution Pk under hypothesis Hk. The optimal centralized test for the Neyman-Pearson and Bayes
criteria is well known [31]. As shown in [18], the same test is also optimal for the mutual information
criterion [2]. This test is given by

φ(x) =


1 if L(x) > τ
γ if L(x) = τ
0 if L(x) < τ

(1)

where φ(x) is the probability of deciding for H1 when x is observed, L is the likelihood ratio dP1/dP0,
and γ and τ are chosen to conform to the specific performance goals of the system designer. For Bayes
detection, γ is irrelevant and for mutual information it is optimally 0 or 1. If we assume no bandwidth
constraint and that the data at different sensors is conditionally independent, then the sensors can transmit
the local likelihood ratio (since it is then a sufficient statistic for the detection problem [24, pages 145-
147]), rather than the data itself. We assume henceforth that the sensor data is, in fact, conditionally
independent.

In general, for decentralized detection, the channels between the sensors and the fusion center will be
bandlimited. Suppose that, for a given decision, the maximum number of bits that can be transmitted
by sensor i is bi = log2Mi. Suppose also that the number of possible values of Li (the local likelihood
ratio at the ith sensor) is greater than Mi. Under these circumstances, we must transmit a non-sufficient
statistic Ui from the ith sensor to the fusion center. The major subject of this paper is the optimal form
of such a statistic. Since the channel bit rate is limited to bi, it is apparent that Ui must belong to a
set containing at most Mi elements. The elements themselves are irrelevant, for convenience we assume
that they form the set {0, 1, . . . ,Mi − 1} and we define the probabilities αij = Pr{Ui = j|H0} and
βij = Pr{Ui = j|H1}. Hence, the situation we are studying is the following: the ith sensor receives the
random data Xi; according to some yet to be determined decision rule, it produces the statistic Ui, which
takes on one of the values in the set {0, 1, . . . ,Mi − 1} in accordance with the probabilities {αij} and
{βij}; the set of statistics {Ui}, i = 1, 2, . . . , N , is transmitted to the fusion center where the final binary
decision U0 is made. The objective is to have a procedure (at both the sensors and the fusion center) that
selects the value for U0 in an optimal way.

We assume throughout this paper that Xi has a density. This can be done without loss of generality
since we are concerned with the relative probabilities under the two hypotheses of sets of values for Xi

but never with the actual values of Xi itself. Hence, for any Xi that does not have a density and any
partition Ui of the set Ωi, we can substitute the random variable X ′i and the partition U ′i so that X ′i has
a density and U ′i has the same distribution as Ui under both hypotheses. We do not, however, assume
that the likelihood ratio of Xi has a density since this excludes many situations of interest (for example,
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additive signals in Laplace noise). One of the main points to be demonstrated in this paper is that it is
the distributions of the likelihood ratio with which we are most interested.

Lastly, as a notational convenience we let I+
P be the set of positive integers less than or equal to P

and we let IQ be the set of non-negative integers less than or equal to Q.

III. NEYMAN-PEARSON AND BAYES CRITERIA

A binary detection system makes a decision that can take on one of two values. The selection of this
value amounts to deciding, based on the available data, that one of the two possible states of nature
H0 and H1 is true. Since the data used in the decision process is random, there is generally a non-zero
probability of error associated with the system decision. Throughout this paper, we will refer to the
probability of deciding H1 when H0 is actually true as the false alarm probability, level, or size of the
test. We will refer to the probability of correctly deciding H1 as the probability of detection or the power
of the test. These two probabilities exhaustively define the statistical properties of the test.

A. Decentralized Neyman-Pearson Detection

The objective for systems designed under the Neyman-Pearson criterion is to achieve maximum power
for fixed test level. For an arbitrary fusion rule (with given sensor decision rules for the N sensors) and
maximum overall level α0, the ultimate decision U0 is determined by a partition of the observation space
D of the vector {U1, U2, . . . , UN}. The space D is the Cartesian product of the sets IMi−1 for i ∈ I+

N . In
the following, we denote a decision for Hk by U0 = k. Let u = {u1, u2, . . . , uN} be a realization of U.
If the fusion rule is chosen according to the Neyman-Pearson criterion (that is, the rule which maximizes
the resulting power of the test), then we use a likelihood ratio test given by

φ(u) =


1 if L(u) > τ
γ if L(u) = τ
0 if L(u) < τ

(2)

where φ(u) = Pr{U0 = 1|U = u},

L(u) =
N∏
n=1

βnun

[
N∏
n=1

αnun

]−1

(3)

and γ ∈ [0, 1]. If we define D1 = {u : L(u) > τ}, Dγ = {u : L(u) = τ}, and D0 = D∩D1 ∪Dγ , then
for the fixed test size α0, γ and τ are chosen so that

α0 =
∑
D1

N∏
n=1

αnun + γ
∑
Dγ

N∏
n=1

αnun . (4)

The power of this test is

β =
∑
D1

N∏
n=1

βnun + γ
∑
Dγ

N∏
n=1

βnun . (5)

It is well known [20] that the optimal Bayes test, with γ = 0 and an appropriately chosen value for τ ,
can be written in the form of (2). Hence, for a given set of priors, the optimal Bayes test can be found by
choosing an appropriate Neyman-Pearson test. Thus, it is clear that the optimal Bayes decentralized test
will be determined by the set of ordered pairs (α0, β

∗) where α0 ∈ (0, 1) is the test size and β∗ is the
maximum power possible at that size. Which particular pair is used will depend on the prior probabilities
of H0 and H1.
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Let φi,j(xi) = Pr(Ui = j|Xi = xi), for each j ∈ IMi−1, and each i ∈ I+
N . If, for each xi,∑Mi−1

j=0 φi,j(xi) = 1, then the set {φi,j}, defines a mapping of Ωi into IMi−1 and can be used in a
decentralized detector as a sensor decision rule. We call such a mapping an Mi level mapping. With βij
and αij as previously defined we have the following lemma.

Lemma 1: If βij/αij = βik/αik for j 6= k, then the performance of a decentralized detection system
using an Mi level mapping as the ith sensor decision rule is equivalent to that of a system using an
Mi − 1 level mapping.
Proof. See [35], [36].

Generally, there are an uncountable number of possible decision rules for the sensors. A decision rule
of particular interest is given by the following definition.

Definition 1: A monotone partition of the set Ω by the likelihood ratio L is a collection of disjoint,
non-trivial sets {R0, . . . , RN} with ∪Ni=0Ri = Ω such that if x ∈ Rj , x′ ∈ Rj , y ∈ Rk, y′ ∈ Rk, and
L(x) > L(y), then L(x′) ≥ L(y′) a.e.(P0).

We henceforth refer to such a partition as a likelihood ratio partition. Let Li = dP1i/dP0i be the
likelihood ratio of Xi. We show later that the optimal decision rule for the ith sensor is a likelihood ratio
partition of Ωi by Li.

Lemma 2: For fixed test size, there exists an Mi level mapping such that the power of a decentralized
detection system using this Mi level mapping as the ith sensor decision rule is no smaller than that of
a system using any Mi − 1 level mapping.
Proof. See [35], [36].

Lemma 3: Assume that for any finite set F ⊂ <+ containing Mi or fewer elements, P0i{Li(Xi) ∈
F} < 1. Then a decentralized detector using a likelihood ratio partition of Ωi is at best equivalent to one
that uses some sensor decision rule of the form

Pr(Ui = j|Xi = xi) = φi,j(xi) =


1 if ti,j < Li(xi) < ti,j+1

γi,j if Li(xi) = ti,j
1− γi,j+1 if Li(xi) = ti,j+1

0 otherwise

(6)

where j ∈ IMi−1, ti,0 = 0, ti,Mi
=∞, ti,j ≤ ti,j+1, and γi,k ∈ [0, 1], k ∈ IMi

. Furthermore, there always
exists a likelihood partition for which detector performance will be equivalent to that achieved using the
decision rule of (6).
Proof. See [35], [36].

We note in passing that if Xi does not have a density, the definition of a likelihood ratio partition
may be modified by omitting the word disjoint. In that event, Lemma 3 will hold. We also note that if
F is any finite set of real numbers and if Li(Xi) ∈ F with probability one, then the performance of a
decentralized detector using likelihood ratio partitions cannot be improved by increasing the number of
levels at the ith sensor beyond the number of elements in F .

Theorem 1: The Neyman-Pearson optimal sensor decision rule is a likelihood ratio partition.
Proof. We assume that βij/αij ≥ βik/αik. Then L(ui, j) ≥ L(ui, k). Hence {ui, ui = k} ∈ D1 implies
that (ui, ui = j) ∈ D1, and (ui, ui = k) ∈ Dγ implies that (ui, ui = j) ∈ Dγ ∪ D1; that is, if there is a
non-zero probability that we would decide for H1 when ui = k, then the probability of so deciding is at
least as large if we change ui from k to j. Assume that the levels are ordered as in (??). Then for each
N − 1 dimensional vector ui there is some integer b(ui) such that for j ≥ b(ui), (ui, ui = j) ∈ D1.
Furthermore, there is some integer a(ui) < b(ui) such that for a(ui) < j < b(ui), (ui, ui = j) ∈ Dγ .

Suppose we are given an arbitrary decentralized detection system which satisfies (2) and (??). Let
φi,j(xi) = Pr(Ui = j|Xi = xi) define the sensor partition rules for this arbitrary system. Here i ∈ I+

N

and xi ∈ Ωi. For this partition, let Qki(j) =
∫

Ωi
φi,j(xi)dPki(xi) be the probability that Ui = j under the
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hypothesis Hk, k = 0, 1. Also construct a likelihood ratio partition for the ith sensor with the probability
functions Q∗ki, k = 0, 1. We choose the latter partition so that

Q0i(j) = Q0i
∗(j), j = 0, 1, . . . ,Mi − 1 . (7)

and assume that it can be described by Eq. (6) with ti,0 = 0, ti,Mi
=∞, ti,j < ti,j+1, and the γi,j ∈ [0, 1],

k ∈ IMi
. The {ti,j}, j ∈ I+

Mi−1 and {γi,j} are chosen to satisfy the equality constraints of Eq. (7). Using
the Neyman-Pearson fusion rule used for the arbitrary partition, Q0i

∗ and Q1i
∗ will also satisfy (??) and

the two tests will have the same level. For the likelihood ratio partition we have, for any n ∈ IMi−1,

Q1i
∗{Ui ≥ n} = P1i{L(Xi) > ti,n} + γi,nP1i{L(Xi) = ti,n}.

For Neyman-Pearson fusion and by (??), the power of the test using the arbitrary partition is

β =
∑
ui

Pr{ui|H1} [Q1i{ui ≥ b(ui)}+ γQ1i{a(ui) < ui < b(ui)}]

where γ ∈ [0, 1] is a randomization chosen so that the test level may be exactly specified. Suppose that
vi is some arbitrary value of ui and that b(vi) = b and a(vi) = a. Then for ui = vi the bracketed term
in (8) can be written as

Q1i{ui ≥ b}+ γQ1i{a < ui < b} = σ + γρ

where
σ =

∫
Ωi

∑
j≥b

φi,j(xi)dP1i(xi)

and
ρ =

∫
Ωi

∑
a<j<b

φi,j(xi)dP1i(xi)

For the likelihood ratio partition with Neyman-Pearson fusion, the power is

β∗ =
∑
ui

Pr{ui|H1} [Q1i
∗{ui ≥ b(ui)} + γQ1i

∗{a(ui) < ui < b(ui)}] (8)

For ui = vi the bracketed term in (8) can be written as.

Q1i
∗{ui ≥ b} + γQ1i

∗{a < ui < b} = σ∗ + γρ∗ (9)

where
σ∗ = P1i{Li(xi) > ti,b}+ γi,bP1i{Li(xi) = ti,b}

and

ρ∗ = P1i{ti,a+1 ≤ Li(xi) < ti,b}+ (1−γi,b)P1i{Li(xi) = ti,b}− (1−γi,a+1)P1i{Li(xi) = ti,a+1} (10)

Since vi is arbitrary, to complete the proof it suffices to show that the quantity in (9) is at least as large
as σ + γρ or

σ∗ − σ − γ(ρ − ρ∗) ≥ 0 . (11)

By Eq. (7), the H0 probability corresponding to σ is:

P0i{Li(xi) > ti,b}+ γi,bP0i{Li(xi) = ti,b}

and the H0 probability corresponding to ρ is:

P0i{ti,a+1 ≤ Li(xi) < ti,b}+ (1− γi,b)P0i{Li(xi) = ti,b} − (1− γi,a+1)P0i{Li(xi) = ti,a+1} . (12)
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Hence, by the Neyman-Pearson lemma for randomized tests [15], we know that σ∗ ≥ σ. Then a necessary
condition for (11) not to hold is ρ∗ < ρ. In that case, the left side of (11) is decreasing in γ and

σ∗ − σ − γ(ρ − ρ∗) ≥ σ∗ + ρ∗ − (σ + ρ). (13)

But
σ∗ + ρ∗ = P1i{Li(xi) > ti,a+1} + γi,a+1P1i{Li(xi) = ti,a+1}

and, by Eq. (7),∫
Ωi

∑
j>a

φi,jdP0i(xi)P0i{Li(xi) > ti,a+1} + γi,a+1P0i{Li(xi) = ti,a+1} (14)

so by the Neyman-Pearson lemma, the right side of (13) is non-negative and (11) holds.

B. Decentralized Bayes Detection

We now turn to the optimal decentralized Bayes test. Let π0 and π1 be the prior probabilities of H0

and H1, respectively. Also let Cmn be the cost assigned to choosing hypothesis Hm when Hn is the true
hypothesis. The average or Bayes cost of the detection system is then

C =
1∑

n=0

πnC0n +
1∑

n=0

πn(C1n − C0n)Pn(D1)

where D1 is the fusion center decision region for H1. The objective of Bayesian detection is to minimize
this cost. If, given a true hypothesis, the cost of making an error is greater than the cost of making the
correct decision (as it logically should be) then the optimal fusion rule for the Bayes test is given by the
following:

φ(u) =

{
1 if L(u) > τ
0 if L(u) < τ

(15)

where φ(u) is the probability of choosing H1 given that U = u. The optimal threshold is

τ =
π0(C10 − C00)

π1(C01 − C11)
(16)

Note the similarity between Eqs. (2) and (15). Having specified the fusion rule, we now turn to the sensor
quantizers.

Theorem 2: The sensor decision rules for an optimal Bayes detector are likelihood ratio partitions of
the sensor observation spaces.
Proof. The Bayes test uses, for each set of priors (π0, π1), a particular level and the maximum power
that can be achieved for a test at that level. Eq. (2) gives the maximum power test for the level achieved
by the threshold-randomization pair γ and τ . For Bayes tests, we specify that γ = 0 and τ is as given
by Eq. (16). Hence, by application of Theorem 1, the theorem is proved.

We have therefore shown that the optimal decentralized detector under the Neyman-Pearson and Bayes
criteria, uses a quantized version of the local likelihood ratio as the sensor decision rule. Hence, in the
design of such a system, it is necessary only to partition the likelihood ratio rather than the raw data.
This is intuitively satisfying since the likelihood ratio is a sufficient statistic for the detection problem.
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IV. DISCUSSION AND EXAMPLES

It is intuitively appealing that an optimal sensor mapping strategy should be a quantization of the
minimal sufficient statistic for detection, the likelihood ratio. Although the result appears to have been
widely assumed, up to now it has been proven only for a number of special cases. We mention several
here, the first two of which have been cited previously:
• For the Bayes criterion with single-bit channels (Mi = 2), Reibman and Nolte have shown that

sensors perform local likelihood ratio tests [23].
• Poor and Thomas [21] have derived Ali-Silvey distance optimal thresholds for the case in which the

local likelihood ratios are monotonically-increasing functions of the data.
• For the “weak-signal” case, Kassam [12] has demonstrated that the sensor mapping function that

maximizes the efficacy (or asymptotic signal-to-noise ratio) is a quantization of the differential
log-likelihood ratio.

• For discrimination EH0

[
log

(
P1(u)
P0(u)

)]
(an Ali-Silvey distance measure closely related to Shannon

Information) and discrete-valued sensor data, it can be inferred from the refinement lemma [2,
Theorem 4.2.3] that the optimal sensor mapping is a quantization of the local likelihood ratio.

• For the Chernoff function − log
{
EH0

[(
P1(u)
P0(u)

)s]}
,0 < s < 1, it has been shown in [13] that the

optimal mapping is a quantization of the local likelihood ratio. Note that Bhattacharyya distance is
a special case (s = 1

2 ) of the Chernoff function.
Which measure is most appropriate is largely a function of the application. If prior probabilities for

the hypotheses are known, then Shannon Information may be most appealing; if, in addition, error costs
can be assumed, then a Bayes criterion should be used. Without prior probabilities the Neyman-Pearson
criterion is most natural; however, the resulting scheme is in general optimal only at a particular false-
alarm rate and its derivation can require extensive computation. The Ali-Silvey distance criteria, which
utilize the sensor outputs U rather than the final decision U0, generally work well for a broad range
of false-alarm rate; unfortunately, there is no guarantee of any meaningful optimality. We present the
following examples for clarification.

Example 1: Suppose we are to design a constant false-alarm rate (CFAR) system for Swerling II
targets. The system is constrained to have three sensors (N = 3); each sensor can send one of three
possible messages (Mi = 3 i = 1, 2, 3) to the fusion center. A cell-averaging (CA) scheme on 20
homogeneous reference cells {{Yij}20

j=1}3i=1 is used to estimate the ambient noise level. For each i and
j, Yij is exponentially distributed with parameter λ; that is, the density function of the reference value
is:

f(x) =

{
λe−λx x ≥ 0

0 else

The output of the test cell Zi is exponentially distributed with parameter λ
2 under H1, and with parameter

λ under H0. All random variables are assumed to be independent. The sensors quantize the normalized
data {Xi}3i=1, where

Xi =
Zi

1
20

∑20
i=1 Yij

It can be shown that the Xi are independent and identically distributed (i.i.d.) with density

fX(x) =
θ

(1 + θx/20)21

where θ = 1 under H0 and θ = 0.5 under H1. Since the local likelihood ratios

Li(Xi) =
1

2

(
1 +Xi/20

1 +Xi/40

)21
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are monotone-increasing functions of Xi, quantizing the data directly is equivalent to a likelihood-ratio
partition.
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Fig. 1. Plot of Neyman-Pearson optimal thresholds versus α for example 1 (CA-CFAR).
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Fig. 2. Plot of Neyman-Pearson optimal thresholds versus α for example 1. This is an expanded version of the low-α behavior
in figure 1.

As we discuss later, it is not always true that the optimal sensor mappings are identical likelihood
ratio partitions. Obviously, this will not in general be the case if the channel capacity constraints differ
between sensors. However, it still may not be true even if all of the sensors observe i.i.d. random processes
and face identical communications constraints (i.e. Mi = M ). However, in the case of Example 1, the
partitions are in fact identical. The Neyman-Pearson optimal thresholds are plotted against α in figure
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Fig. 3. Performance comparison of thresholds optimized under Neyman-Pearson, efficacy, and Bhattacharyya measures, in
situation of example 1. Note that the NP-optimal thresholds vary with α; but those under the other two criteria cannot, hence the
piecewise-linear ROCs. The vertical lines denote the region of this ROC obtainable under by maximizing mutual information;
see figure 4.
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Fig. 4. Performance comparison of thresholds optimized under Neyman-Pearson criterion in situation of example 1. The
“Optimal” thresholds vary with α; but that optimized for a fixed α = 10% naturally do not.

1. Note the discontinuity at α ≈ 0.7%. This can be seen more clearly in figure 2, where we have
expanded the α axis for α < 0.01. The discontinuity is due to a transition in the optimal fusion rule:
for α > 0.007, D1 = {(2, 3, 3) (3, 2, 3) (3, 3, 2) (3, 3, 3)}; for α < 0.007 D1 is any permutation of
{(1, 3, 3) (2, 2, 3) (2, 3, 3) (3, 3, 3)}. Here (u1, u2, u3) represent the outputs of the three sensors, and
each output is assumed to be ordered as in (??). As is true for many quantized detection systems, there
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Criterion t1 t2

Bhattacharyya 1.33 3.65
J-Divergence 1.46 4.05

Efficacy 0.58 1.60
TABLE I

OPTIMAL THRESHOLDS (EXAMPLE 1)

is no fusion rule that is optimal for all α.
Optimal thresholds under a number of other criteria are shown in Table 1. In all cases the thresholds are

the same at each of the sensors. Receiver operating characteristics (ROCs) for detectors optimized for the
Neyman-Pearson, efficacy and Bhattacharyya distance criteria are shown in figure 3. Because optimization
for the latter two criteria results in only one set of thresholds for each sensor (i.e. the thresholds do not
change as a function of false alarm rate), the resulting fusion rule will use randomization and the detector
ROC curves are piecewise linear. In figure 4, we show the ROC curve for a quantizer optimized for a
fixed false alarm rate (10%). Note that here again fixed thresholds result in randomization and a piecewise
linear ROC.

Figure ?? shows the values of α and β, as a function of π0 (= Pr(H0)), achieved with the quantizer
that maximizes the information measure I(U0;H). By comparing this to figures 3 and ??, we see that
any information-optimal system (for 0 < π0 < 1) is identical to a Neyman-Pearson optimal scheme
with 0.1 < α < 0.26 (approximately). This is consistent with Theorem 3; however, we also note that
maximum mutual information is achieved for some test level in the interval (0.1, 0.26) for all values of
π0. Thus, the mapping between π0 and the information-maximizing false alarm rate is invertible but not
necessarily one-to-one.
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Fig. 5. Quantizer optimized under Neyman-Pearson (α = .01) and J-divergence, for additive signal in Cauchy noise situation
of example 2.

Example 2: Suppose we have ten sensors (N = 10) that take one observation each. The observations
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Fig. 7. Performance of quantizers for dependent situation of example 3. The thresholding scheme and an explanation of terms
is in figure 6.

are i.i.d. realizations of a unit Cauchy random variable with density

f(x) =
1

π (1 + (x− θ)2)

Under the noise-only hypothesis H0, θ = 0; under H1, θ = 2. Each of the sensors uses a five level
quantizer.
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In figure 5, we show the log-likelihood ratio, the quantizer that is optimal for J-Divergence, and the
Neyman-Pearson optimal quantizer for a false-alarm rate of 1%. The resulting probabilities of detection
for (α = 0.01) are β = 0.907 and β = 0.925 respectively. Note that in both cases the sensor mappings
are likelihood ratio quantizations.

Example 3: Suppose we have ten sensors (N = 10) that are capable of transmitting one of five possible
messages (Mi = 5) each. With Yi representing the observation at the ith sensor, the detection problem
can be written as

H0 : Yi = (1− Z)N1i + ZN2i

H1 : Yi = Si + (1− Z)N1i + ZN2i

Here {Si}10
i=1, {N1i}10

i=1, and {N2i}10
i=1 are all independent, zero-mean and Gaussian, with E(S2

i ) =
E(N2

1i) = 1 and E(N2
2i) = 10. The binary random variable Z takes on values 0 and 1 with respective

probabilities 90% and 10% and has the same value at all of the sensors.
This example is used to demonstrate the effect of dependence among the sensors. Without the high

power noise process, the model conforms to the unknown (Gaussian) signal in Gaussian noise problem.
When the N2i process is included we have added the possibility of jamming: there is a 10% probability
that all of the sensors will be jammed, and a 90% probability of no jamming.

For each sensor the statistic Xi = Y 2
i is sufficient. Since Yi is always Gaussian, Xi, conditioned on

the hypothesis and the presence or absence of jamming, will have a Rayleigh density given by:

fR(x;σ2) =

{
x
σ2 e−x

2/2σ2

x ≥ 0
0 else

Here, σ2 will depend on both the hypothesis and the value of Z. Hence, the univariate density of Xi is

f(xi) = (1− ε)fR(xi; 1 + θ) + εfR(xi; 11 + θ) (17)

and the joint density of the observations is

f(x1, x2, . . . , x10) = (1− ε)
10∏
i=1

fR(xi; 1 + θ) + ε
10∏
i=1

fR(xi; 11 + θ) (18)

Here ε = 0.1, while θ = 0 under H0 and θ = 1 under H1.
We consider two cases of quantizers optimal under the Bhattacharyya criterion. First, we maximize the

Bhattacharyya distance of Ui, the (quantized) output of each sensor; this is equivalent to the assumption
that the sensor observations are independent with the density given by Eq. (17). Second, we maximize
the Bhattacharyya distance for U; that is, for the ensemble input to the fusion center. In figure 6, we
plot the logarithm of the local likelihood ratio, the quantizer that results from the first maximization, and
we indicate the thresholds that are used to quantize the data for the latter maximization. As expected,
the independence assumption results in a quantization of the local likelihood ratio as specified by (17).
The fact that inclusion of the dependence results in a quantization of the data Xi is not surprising; a
large value of Xi is indicative of jamming at the ith sensor which in turn implies jamming at all sensors.
Note that due to dependence, the quantizer levels in the second case are meaningless and are not shown.
The ROC curves under both assumptions are shown in figure 7. Since the dependence assumption more
accurately models the problem, the resulting ROC dominates that found when independence is assumed.

Example 4: Suppose that three sensors (N = 3) observe mutually independent data and that the
likelihood ratio of the data has density

fH0
(x) =

{ c

1+[k(x− 1

2
)]

2 + c

1+[k(x− 3

2
)]

2 0 ≤ x ≤ 2

0 else
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under H0 and xfH0
(x) under H1). The constant c is chosen to normalize the density and k = 100. Each

sensor uses binary quantization (Mi = 2).
This example is discussed in [38], [37]. It can be shown that if identical thresholds are used at all of

the sensors, the optimal test (given the identical threshold constraint) will require a randomized fusion
rule. Such tests were posited to be sub-optimal in [37], although an excellent recent article [9] indicates
that this is true over a more restricted class than was previously believed. In any case, when the constraint
is removed, randomization is no longer necessary. The optimal thresholds for the unconstrained case are
shown in figure 8 as a function of α. In the figure, the partitions labeled AND, OR, and MAJORITY
refer to the optimal fusion rule logic for the test levels within the partitions. Note that the three thresholds
are not in general equal. Intuition suggests that if the sensors are quantizing i.i.d. random variables, then
the quantizers used should be identical; this, however, is not always true. It should also be noted that for
any prior probabilities, the operating points for a system optimized with respect to either global mutual
information or Bayes cost must lie on the ROC curve for Neyman-Pearson optimal detectors. Hence, for
i.i.d. sensor observations and identical channel constraints, the optimal detectors for the Bayes and mutual
information criteria may use different sensor quantizers. From this somewhat pathological example we
draw some conclusions in the following section V.

V. IDENTICAL QUANTIZATION FOR IDENTICAL SENSORS

In the previous example 4, independent and identically-distributed sensor data with local likelihood
ratio densities differentiable to arbitrary order gives rise, optimally, to different sensor mapping functions
[37]. When does this happen, and when can we reasonably ignore the possibility? Certainly it is known to
occur when sensor likelihood ratios contain point masses of probability; yet example 4 does not contain
point masses.

Here we provide some answer. It will turn out that there is a threshold in terms of point-mass
behavior of the likelihood ratio densities; once these densities are sufficiently “peaky”, non-identical
sensor quantization functions ought to be used.

A. The Necessary Conditions

With the local decision thresholds equal it is clear that the fusion rule must be of the “k-out-of-n”
variety; that is,

D =

{
H1

∑n
i=1 Ui ≥ k

H0
∑n
i=1 Ui < k

}
(19)

This is a familiar form, particularly for k = 1 (the or rule), for k = n (the and rule), and for k =
n+1

2 (majority-logic). If an optimized system is to use identical local decision thresholds, then certainly
optimizing under the constraint of a k-out-of-n fusion rule must again result in identical thresholds. Let
us check this.

Following standard optimization theory we shall minimize the function

C(t1, . . . , tn) ≡ 1− β + λ(α− αd) (20)

subject to the constraint α = αd. We shall assume for now that 1 < k < n. Writing β in terms of ti we
get

β = F1(ti)Pr

 n∑
j=1,j 6=i

Uj ≥ k | H1

+ (1− F1(ti))Pr

 n∑
j=1,j 6=i

Uj ≥ k − 1 | H1

 (21)

Distributed Detection and Data Fusion 

STO-EN-IST-155 2 - 13 



or

β = Pr

 n∑
j=1,j 6=i

Uj ≥ k | H1

+ (1− F1(ti))Pr

 n∑
j=1,j 6=i

Uj = k − 1 | H1

 (22)

with a similar expression for α, and in which we have defined

Fl(t) ≡ Pr(Li ≤ t | Hl) (23)

for l = 0, 1.
The first-order necessary conditions for a minimum are that the gradient of C with respect to the

thresholds is zero, or that

f1(ti)Pr

 n∑
j=1,j 6=i

Uj = k − 1 | H1

 = λf0(ti)Pr

 n∑
j=1,j 6=i

Uj = k − 1 | H0

 (24)

for all i ∈ {1, n}, and where fl(t) ≡ d
dtFl(t) are the likelihood ratio densities. It is clear that equation

(24) is satisfied for any set of identical thresholds, hence that value t∗ which satisfies the false-alarm
constraint is at least a critical point of the cost function. Evaluating the probabilities explicitly we have

λ∗ =
f1(t∗)

f0(t∗)

(
1− F1(t∗)

1− F0(t∗)

)k−1 (F1(t∗)

F0(t∗)

)n−k
(25)

corresponding to t1 = . . . = tn = t∗.
It can be shown that a necessary condition for t1 = . . . = tn = t∗ is that

(n− k)
d

dt∗
ln

(
f1(t∗)/f0(t∗)

F1(t∗)/F0(t∗)

)
+ (k − 1)

d

dt∗
ln

(
f1(t∗)/f0(t∗)

(1− F1(t∗))/(1− F0(t∗))

)
> 0 (26)

While this has been proven only for 1 < k < n, it can be shown via a parallel development that (26)
is also a necessary condition for the and (k = n) and or (k = 1) fusion rules. It is interesting that
similar ROC slope conditions have been used as predictors of pathology in [?], in which it is shown that
under certain such conditions the probability of error does not go to zero as the number of sensors grows
without bound.

B. Interpretation

Let us recapitulate the results of the previous section. We have noted that if an identical threshold is
to be used at each sensor, then a k-out-of-n fusion rule must be employed. With such thresholds and
fusion rule the first-order necessary conditions for optimality are indeed satisfied; in addition we have
presented (second-order) conditions necessary for optimality, and sufficient for the cost function C to be
at least a local minimum.

Consider the functions

gk(x) =
n∑
l=k

(
n
l

)
xl(1− x)n−l (27)

for which gk(0) = 0, gk(1) = 1, and ġk(x) > 0 for 0 ≤ x ≤ 1. With β0(α0) representing the receiver
operating characteristic (ROC) of an individual sensor, a system optimal under the assumption of identical
thresholds uses

k∗ = arg maxk

{
gk
(
β0

(
g−1
k (αd)

))}
(28)

for its fusion rule. If the operating point on the individual-sensor ROC corresponding to the design false-
alarm rate αd does not satisfy (26), then an optimal design does not use identical thresholds. If on the
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Fig. 8. Thresholds for “pathological” case of example 4. Here the sensors are independent (conditioned on hypothesis) and
identical, yet the three sensors employ different thresholds. The fusion rules which happen to be optimal are also given.
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Fig. 9. Interpretation of second-order necessary conditions.

other hand (26) is satisfied, then the design produces at least a local minimum of the cost function C;
unfortunately there do not appear to be any general statements one can make about convexity, and there
may still be a better design using non-identical thresholds, or even with a different (not k-out-of-n) fusion
rule.

The and and or fusion rules are exceptional. In these cases (24) may be written as

f1(ti)

1− F1(ti)

n∏
j=1

(1− F1(tj)) = λ
f0(ti)

1− F0(ti)

n∏
j=1

(1− F0(tj)) (29)
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Fig. 11. The version of equation (26) appropriate for example 9 (same as example 4) and an and rule. Note that with k = 10
this curve is monotone (the derivative is always positive, and hence (26) is always satisfied); while for k = 100 this is not so.

and
f1(ti)

F1(ti)

n∏
j=1

(F1(tj)) = λ
f0(ti)

F0(ti)

n∏
j=1

(F0(tj)) (30)

respectively, for which it is clear that (26) guarantees unique solutions. In fact, the and and or rules,
since they represent inequality (26) in its purest forms, offer the most straightforward interpretation. The
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Fig. 12. The single-sensor ROC for example 9 (same as example 4), for use with equation (31) to determine whether the sensors
use identical quantizations. The same conclusions can be drawn as in the alternative approach of figure 11: when k = 100, this
ROC is sufficiently flat to violate (31).

necessary conditions for the and rule may be written in terms of the individual-sensor ROC as

d

dα
ln

(
dβ

dα

)
<

d

dα
ln

(
β

α

)
(31)

while for the or rule we have
d

dα
ln

(
dβ

dα

)
<

d

dα
ln

(
1− β
1− α

)
(32)

Geometrically the left sides of (31) and (32) represent the relative rate of change of the slope of the
individual-sensor ROC at a given operating point. The right sides represent the relative rates of change of
the slopes of secants drawn between the operating point and (0,0) and (1,1) respectively; this is shown in
figure 9. Here the slope of a is dβ

dα , that of b is β
α , and that of c is 1−β

1−α . Since all quantities are negative,
we see that the second-order necessary conditions will be violated for a sufficiently flat (in the sense of
constant slope) portion of the ROC — this is indicative of a large (but not necessarily a point) mass of
probability.

Example 5: For the known-signal in Gaussian noise hypothesis problem, inequalities (31) and (32) are
always satisfied.

Example 6: For the single-sensor ROC described by β0 = αs0 (0 < s < 1), which may arise from
an exponential-density hypothesis-testing problem, the left and right sides of (31) are equal. In fact, the
performance of such a test using an n-sensor and rule is completely insensitive to the thresholds used,
and actually is equal to the single-sensor performance. Not surprisingly the and rule is never optimal,
and (26) is satisfied for any k > 1.

Example 7: (Same as example 4.) The null-hypothesis density f0 is shown in Figure 10 for k = 10
and k = 100. It was observed that for k = 10 the thresholds optimally should be identical, while they
may differ for k = 100, the latter case more closely resembling point masses. The actual thresholds for
k = 100 and three sensors are shown in Figure 8. It turns out that (26) begins to fail for some t when
k > 11. For example, if an and rule is to be used, only the second term in equation (26) must be checked
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since k = n. This logarithm (that is, without the derivative) is plotted in figure 11. It is clear that with
k = 10 the slope is always positive, and there is no doubt that sensor quantizations should be identical;
yet with k = 100 this is not true, and the behavior of figure 8 results. The same conclusion can be drawn
from directly from the ROC of figure 12 using equation (31) instead of (26).

In summary, there is, for the binary quantization case, an easy-to-check necessary condition, given in
terms of the local ROC, for the sensor mapping functions to be identical. It turns out that the condition
is violated when the local likelihood ratio densities become “point-mass like” in that their probability
is sharply concentrated; they need lose their continuity and differentiability, however. The condition was
derived in the context of Neyman-Pearson detection systems, but the proof is valid for Bayesian schemes
as well. The necessary condition is known to be sufficient only for and and or fusion rules. Excellent
further results on the relative performance of identical versus non-identical quantization are available in
[6]; generally the difference is not great.

VI. THE GOOD, BAD AND UGLY: DECENTRALIZED DETECTION WITH CORRELATION

We are particularly concerned in [39] with hypotheses of correlated Gaussian data with different mean
vectors

H : x1, x2 ∼ N(0, 0, 1, 1, ρ)

K : x1, x2 ∼ N(s1, s2, 1, 1, ρ)

in which

N(s1, s2, σ
2
1, σ

2
2, ρ) ≡ frac12π(1− ρ2)σ1σ2

×e
−1

2(1−ρ2)

[(
x1−s1
σ1

)2
−2ρ
(
x1−s1
σ1

)(
x2−s2
σ2

)
+
(
x2−s2
σ2

)2]
is the usual bivariate Gaussian density function. Note that there is no loss of generality in assuming zero
means under H and unit standard deviations since we could translate x1 and x2 by any means under H
and scale them both by any non-unity standard deviations and this would not change any of the results
in this paper. Further, we may assume that ρ is non-negative (if ρ < 0, just multiply one of the xi by
−1). The advantage of these assumptions is that a convenient representation of our results occurs on the
(s1, s2) plane.

Recall that there are mappings x1 → U1 and x2 → U2 according to the sets {Ai} in (33):

Ui = Ui(xi) =

{
1 ; xi ∈ Ai
0 ; xi /∈ Ai

(33)

where each Ai is a (possibly infinite) union of intervals

Ai =
Mi⋃
j=1

(li,j , ui,j) (34)

There are three fusion rules to consider:

AND : U =

{
1 U1 = U2 = 1
0 else

OR : U =

{
0 U1 = U2 = 0
1 else

XOR : U =


1 U1 = 0, U2 = 1
1 U1 = 1, U2 = 0
0 else
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From DeMorgan’s laws it is straightforward to identify the equivalence between a test using an OR rule
and prior πH , and one using an AND rule having prior 1 − πH , after appropriate complementation of
U1, U2, and U . Thus one problem’s OR is another’s AND, and although one rule may dominate for
different parameter values, it is sufficient to restrict analysis to the AND case. It is sometimes mistakenly
assumed that the XOR rule is “non-monotone” and hence always suboptimal. While this is true for cases
of conditionally-independent sensor data, with dependence it is not. As a somewhat trivial example,
consider the sensor data (already binary) given by Table II.

y1 y2 Pr(y1, y2|H) Pr(y1, y2|K)

0 0 .7 .2
0 1 .1 .4
1 0 .1 .4
1 1 .1 0

TABLE II
AN EXAMPLE (ALREADY BINARY) OF A SITUATION IN WHICH AN XOR RULE MAY BE OPTIMAL. NOTE THAT BOTH y1 AND

y2 ARE MONOTONE IN THEIR MARGINAL LIKELIHOOD RATIOS.

To find the individual sensor mapping rules we begin with necessary conditions on the Ai. Assuming
an AND rule and that one of the Ai is known, we can calculate the best Aj ((i, j) is either (1, 2) or
(2, 1)) as [25]

Aj =

{
xj :

∫
Ai
PK(xi, xj) dxi∫

Ai
PH(xi, xj) dxi

≥ πH
πK
≡ τ

}
(35)

where τ is our threshold. For the OR rule we similarly have

Aj =

{
xj :

1 −
∫
Ai
PK(xi, xj) dxi

1 −
∫
Ai
PH(xi, xj) dxi

≥ πH
πK

}
(36)

for which care must sometimes be taken to avoid round-off error. For the XOR rule we have

Aj =

{
xj :

[
1 − 2

∫
Ai
PK(xi, xj) dxi

]
≥ πH

πK

[
1 − 2

∫
Ai
PH(xi, xj) dxi

]}
(37)

Note that it is perilous to write (37) in terms of a likelihood ratio test, since the denominator can change
sign and reverse the direction of the inequality.

We concern ourselves with the case that the densities PK and PH be multivariate Gaussian. For the
most part we restrict attention to the two-sensor (bivariate Gaussian) situation. We ask, by way of our
quest for canonical “rules”:

1) Assuming an AND rule, are the Ai always simply-connected? That is, is it in all cases possible to
compute Ui using a single threshold on xi?

2) If not, are the Ai never simply-connected?
3) With respect to the above two questions, what happens for the OR and XOR rules?
4) Can we avoid consideration of one or more of the fusion rules (XOR, for example), since it is

never optimal?
5) Is there any situation in which the data from one sensor is ignored?
6) Can we at least say that no more than two thresholds are needed for quantization?

It will be proven that the answer to the first two questions is negative. We shall decompose the “space”
of mean-shifts into three regions, coined “good”, “bad”, and “ugly”. In the first of these it is always
possible to compute Ui using a single threshold on the data; and in the second it is never possible. Thus,
we have a rule similar to that governing the conditionally-independent case; unfortunately, no rule is
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forthcoming for the “ugly” region, although we are able to show that a single-threshold quantization rule
offers a person-by-person optimal (PBPO) solution, meaning that many optimization routines, including
the Gauss-Seidel scheme we use, will get “stuck” if initialized with single thresholds or if a single-
threshold solution is found. As regards the third question, the behavior of the OR rule is similar to that
of the AND rule. Again, unfortunately, there is little to be done for XOR – we show numerically that
whatever “regions” may pertain, they do not easily correspond to those for the AND/OR rules. In fact, we
are able to prove that single-threshold quantizers never form an optimal quantization for an XOR fusion
rule: the XOR rule is in a sense always ugly. It is thus tempting to hope that the fourth question may be
answered in the affirmative, particularly since it is easily seen to be true for the conditionally-independent
case (the XOR rule would not be a likelihood ratio test from the fusion center’s point of view). It is
generally difficult to prove superiority of one fusion rule over another unless the latter is clearly a bad
idea; however, we show numerically a number of situations in which the XOR rule is optimal. As regards
the fifth question, it should be understood that in the conditionally-independent (Gaussian) situation this
is never true, since regardless of SNR one sensor’s observation can always be of sufficient certainty to
contradict the other. It is thus perhaps surprising that we are able to prove the answer to the fifth question
is “yes”. It may be clear that the last question may be asked in a tone of frustration; unfortunately the
answer, “no”, is scarcely placatory.

VII. FEEDBACK

A group of human decision-makers, each in possession of an informative observation but constrained
to offer only yes/no opinions to one another, would most probably engage in successive rounds of
communication characterized by the implicit inquiries: “Are you sure?”; or “Are you very, very sure, or
just very sure?” We have termed this discussion/operation parley, and have examined ways to automate
it for use in sensor networks.

To be specific, we have assumed in [26] that sensors observe data which is informative for hypothesis-
testing purposes, and communicate to each other binary data in a broadcast fashion. We have examined
two ways to formulate the procedure. Under the first, which we term “greedy,” each sensor tries to be
as correct as possible, conditioned on its current knowledge, at every round of decision-making. Under
the second, the decision rule is such that if all sensors agree, then the decision that they agree on would
match that of a (hypothetical) centralized decision-maker with access to all data. Both schemes are
straightforward to implement; the first is probably closer in flavor to the human example.

Among our findings is that in both cases a consensus always occurs. In fact, in the first scheme the
consensus occurs almost too quickly: correctness is sacrificed, and the probability-of-error performance is
not particularly impressive. We do not recommend this scheme. Under the second, consensus is delayed
somewhat (although never, in our examples, for too long), in such a way that the decision is the best
possible given the data. If there is a reason to consider the use of feedback, then it is because correctness
is more important than the use of resources for communication – as such, it seems that this would be
the scheme of choice.

VIII. CENSORING

The censoring scheme [22] appears to represent a valid practical alternative to likelihood-ratio quanti-
zation, and is particularly well-suited to situations in which the prior probability of a target being present
in a given resolution cell is small. The result that the no-send region is a single interval facilitates the
processing of the received signal at the local sensors, and moreover, the design of the overall system is
greatly simplified. The performance of the censoring scheme is very near to optimal for small ΠK even
with quite severe communication rate constraints. The same conclusions, with an appropriate redefinition
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of the average communication rate, are valid for the Neyman-Pearson case. Optimization in these cases
is still difficult, and hence in this paper we have presented results of a more practical nature. We have
shown that the same result is true under the easily-optimized Ali-Silvey distance measures. We have also
shown that under certain conditions the “no-send” regions correspond to the local likelihood ratio values
being lower than a threshold.

We have further shown by example that censoring can involve impressive saving in communication.
A feedback scheme to retrieve lost data (when necessary) was also presented, and it was demonstrated
by example that optimal (unquantized) performance is possible with very little communication.

IX. NETWORKS THAT LEARN

In [17] was considered a parametric statistical model for social data. Elaborating on the latent-
variables model for social sensing put forth in [33], [34], we performed a detailed characterization of the
estimation performance bounds in terms of Fisher information, and proposed different likelihood-based
inference algorithms (Expectation-Maximization and Fisher scoring) that are able to meet such bounds
asymptotically. The theoretical analysis revealed the basic scaling laws of the addressed social sensing
model: i) the MSE performance scales inversely with the number of tasks accomplished by the network
agents, while ii) as a function of the number of agents, the MSE saturates to the performance of a
clairvoyant system that has exact knowledge of the underlying hypotheses, i.e., of the latent variables.
Application of the method to a couple of classical estimation problems revealed that the Expectation-
Maximization algorithm is well suited to the latent-variables structure of the model, as noticed in [33],
[34], and that for realistic number of agents’ tasks the Fisher scoring method is effective in delivering
the best achievable performance. In any case, the Fisher scoring approach would provide an excellent
initialization (“warm start”) for EM.
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